PEARC20 has ended
Welcome to PEARC20!
PEARC20’s theme is “Catch the Wave.” This year’s theme embodies the spirit of the community’s drive to stay on pace and in front of all the new waves in technology, analytics, and a globally connected and diverse workforce. We look forward to this year’s PEARC20 virtual meeting, where we can share scientific discovery and craft the future infrastructure.

The conference will be held in Pacific Time (PT) and the times listed below are in Pacific Time.

The connection information for all PEARC20 workshops, tutorials, plenaries, track presentations, BOFs, Posters, Visualization Showcase, and other affiliated events, are in the PEARC20 virtual conference platform, Brella. If you have issues joining Brella, please email pearcinfo@googlegroups.com.
Back To Schedule
Wednesday, July 29 • 1:35pm - 3:35pm
Reproducible and Portable Workflows for Scientific Computing and HPC in the Cloud

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

The increasing availability of cloud computing services for science has changed the way scientific code can be developed, deployed, and run. Many modern scientific workflows are capable of running on cloud computing resources. Consequently, there is an increasing interest in the scientific computing community in methods, tools, and implementations that enable moving an application to the cloud and simplifying the process, and decreasing the time to meaningful scientific results. In this paper, we have applied the concepts of containerization for portability and multi-cloud automated deployment with industry-standard tools to three scientific workflows. We show how our implementations provide reduced complexity to portability of both the applications themselves, and their deployment across private and public clouds. Each application has been packaged in a Docker container with its dependencies and necessary environment setup for production runs. Terraform and Ansible have been used to automate the provisioning of compute resources and the deployment of each scientific application in a Mulit-VM cluster. Each application has been deployed on the AWS and Aristotle federated cloud platforms. Variation in data management constraints, Multi-VM MPI communication, and embarrassingly parallel instance deployments were all explored and reported on. We thus present a sample of scientific workflows that can be simplified using the tools and our proposed implementation to deploy and run in a variety of cloud environments.

Wednesday July 29, 2020 1:35pm - 3:35pm PDT